Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57.327
Filter
1.
PeerJ ; 12: e17378, 2024.
Article in English | MEDLINE | ID: mdl-38726378

ABSTRACT

Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.


Subject(s)
Boric Acids , Calcium Chloride , Citrus sinensis , Fruit , Seaweed , Boric Acids/pharmacology , Citrus sinensis/chemistry , Fruit/chemistry , Fruit/drug effects , Seaweed/chemistry , Seaweed/metabolism , Calcium Chloride/pharmacology , Plant Leaves/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chlorophyll/metabolism
2.
PLoS One ; 19(5): e0300819, 2024.
Article in English | MEDLINE | ID: mdl-38722920

ABSTRACT

The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.


Subject(s)
Daphne , Flowers , Pollination , Reproduction , Daphne/genetics , Daphne/physiology , Flowers/physiology , Flowers/genetics , Genetic Variation , Ecosystem , Fruit/genetics , Seasons
3.
BMC Plant Biol ; 24(1): 378, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724893

ABSTRACT

Pakistan's economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn't have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it.


Subject(s)
Citrus , Fruit , Plant Diseases , Plant Leaves , Xanthomonas axonopodis , Citrus/microbiology , Xanthomonas axonopodis/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Diseases/microbiology , Fruit/microbiology , Minerals/metabolism , Minerals/analysis , Chlorophyll/metabolism , Pakistan
4.
BMC Plant Biol ; 24(1): 355, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724929

ABSTRACT

BACKGROUND: Jackfruit (Artocarpus heterophyllus) is an economically valuable fruit tree in Uganda. However, the production of jackfruit in Uganda is low. Additionally, because of deforestation, genetic erosion of the resource is predicted before its exploitation for crop improvement and conservation. As a prerequisite for crop improvement and conservation, 100 A. heterophyllus tree isolates from the Kayunga and Luwero districts in Uganda were characterized using 16 morphological and 10 microsatellite markers. RESULTS: The results from the morphological analysis revealed variations in tree height, diameter at breast height (DBH), and crown diameter, with coefficient of variation (CV) values of 20%, 41%, and 33%, respectively. Apart from the pulp taste, variation was also observed in qualitative traits, including tree vigor, trunk surface, branching density, tree growth habit, crown shape, leaf blade shape, fruit shape, fruit surface, flake shape, flake color, flake flavor and pulp consistency/texture. Genotyping revealed that the number of alleles amplified per microsatellite locus ranged from 2 to 5, with an average of 2.90 and a total of 29. The mean observed (Ho) and expected (He) heterozygosity were 0.71 and 0.57, respectively. Analysis of molecular variance (AMOVA) indicated that 81% of the variation occurred within individual trees, 19% among trees within populations and 0% between the two populations. The gene flow (Nm) in the two populations was 88.72. The results from the 'partitioning around medoids' (PAM), principal coordinate analysis (PCoA) and genetic cluster analysis further revealed no differentiation of the jackfruit populations. The Mantel test revealed a negligible correlation between the morphological and genetic distances. CONCLUSIONS: Both morphological and genetic analyses revealed variation in jackfruit within a single interbreeding population. This diversity can be exploited to establish breeding and conservation strategies to increase the production of jackfruit and hence boost farmers' incomes. However, selecting germplasm based on morphology alone may be misleading.


Subject(s)
Artocarpus , Microsatellite Repeats , Uganda , Artocarpus/genetics , Artocarpus/anatomy & histology , Microsatellite Repeats/genetics , Fruit/genetics , Fruit/anatomy & histology , Fruit/growth & development , Genetic Variation , Genotype
5.
Sci Rep ; 14(1): 10664, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724603

ABSTRACT

Kiwifruit soft rot is highly contagious and causes serious economic loss. Therefore, early detection and elimination of soft rot are important for postharvest treatment and storage of kiwifruit. This study aims to accurately detect kiwifruit soft rot based on hyperspectral images by using a deep learning approach for image classification. A dual-branch selective attention capsule network (DBSACaps) was proposed to improve the classification accuracy. The network uses two branches to separately extract the spectral and spatial features so as to reduce their mutual interference, followed by fusion of the two features through the attention mechanism. Capsule network was used instead of convolutional neural networks to extract the features and complete the classification. Compared with existing methods, the proposed method exhibited the best classification performance on the kiwifruit soft rot dataset, with an overall accuracy of 97.08% and a 97.83% accuracy for soft rot. Our results confirm that potential soft rot of kiwifruit can be detected using hyperspectral images, which may contribute to the construction of smart agriculture.


Subject(s)
Actinidia , Neural Networks, Computer , Plant Diseases , Actinidia/microbiology , Plant Diseases/microbiology , Deep Learning , Hyperspectral Imaging/methods , Fruit/microbiology , Image Processing, Computer-Assisted/methods
6.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730367

ABSTRACT

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Subject(s)
Citrus , Lignin , Lignin/metabolism , Citrus/metabolism , Citrus/genetics , Fruit and Vegetable Juices/analysis , Reactive Oxygen Species/metabolism , Transcriptome , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , Fruit/metabolism , Fruit/genetics , Antioxidants/metabolism
7.
Int J Behav Nutr Phys Act ; 21(1): 56, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730502

ABSTRACT

BACKGROUND: Adolescence is a pivotal developmental stage, where escalating rates of overweight and obesity have raised concerns about diet quality and its association with adverse health outcomes. Parents are known to have considerable influence on childhood diet, but how this influence changes as adolescents mature is unknown. This study investigates the association between parental fruit and vegetable (FV) intake and adolescent FV consumption, exploring how this changes across adolescence and when adolescents leave home. METHODS: Adolescents aged 10-30 years (n = 12,805) from the UK Household Longitudinal Study (UKHLS), and their parents, reported FV intakes every 2 years. Multilevel linear regression models were fitted to assess associations between parental and adolescent FV intakes, investigating interactions with age and living arrangement, and adjusting for sociodemographic covariates. RESULTS: Parental FV intake was positively associated with adolescent FV intake (ß = 0.20 [95%CI:0.19,0.22] portions/day), with the strength of this association lowest during early adolescence (10-14 years) and peaking at 17-18 years (ß = 0.30 [95%CI: 0.27,0.33] portions/day). When adolescents no longer lived in the parental home, the association of parental FV intake with adolescent FV consumption decreased, but a positive association was maintained up to age 30 years. CONCLUSIONS: Our findings emphasise the enduring effect of parental FV consumption on adolescent FV consumption, highlighting the potential for interventions to promote increased FV intake, acknowledging the lasting influence of parental diet, even beyond the confines of the parental home.


Subject(s)
Diet , Fruit , Parents , Vegetables , Humans , Adolescent , Female , Male , Child , Longitudinal Studies , Young Adult , Adult , United Kingdom , Feeding Behavior/psychology , Parent-Child Relations
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731974

ABSTRACT

Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Germination , Indoleacetic Acids , Plant Proteins , Seeds , Signal Transduction , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Indoleacetic Acids/metabolism , Seeds/growth & development , Seeds/metabolism , Seeds/genetics , Fruit/growth & development , Fruit/metabolism , Fruit/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism
9.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731982

ABSTRACT

Plant extracts can be a valuable source of biologically active compounds in many cosmetic preparations. Their effect depends on the phytochemicals they contain and their ability to penetrate the skin. Therefore, in this study, the possibility of skin penetration by phenolic acids contained in dogwood extracts of different fruit colors (yellow, red, and dark ruby red) prepared using different extractants was investigated. These analyses were performed using a Franz chamber and HPLC-UV chromatography. Moreover, the antioxidant properties of the tested extracts were compared and their impact on the intracellular level of free radicals in skin cells was assessed. The cytotoxicity of these extracts towards keratinocytes and fibroblasts was also analyzed and their anti-inflammatory properties were assessed using the enzyme-linked immunosorbent assay (ELISA). The analyses showed differences in the penetration of individual phenolic acids into the skin and different biological activities of the tested extracts. None of the extracts had cytotoxic effects on skin cells in vitro, and the strongest antioxidant and anti-inflammatory properties were found in dogwood extracts with dark ruby red fruits.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cornus , Plant Extracts , Skin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cornus/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Skin/metabolism , Skin/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Fruit/chemistry , Animals , Chromatography, High Pressure Liquid
10.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732032

ABSTRACT

Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.


Subject(s)
Diospyros , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators , Diospyros/genetics , Diospyros/metabolism , Diospyros/growth & development , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Plant Growth Regulators/metabolism , Gene Expression Profiling/methods , Transcriptome , Plant Proteins/metabolism , Plant Proteins/genetics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732059

ABSTRACT

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Subject(s)
Anthocyanins , Ethylenes , Fruit , Gene Expression Regulation, Plant , Mangifera , Plant Proteins , Transcription Factors , Mangifera/metabolism , Mangifera/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Anthocyanins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Pigmentation/genetics , Chlorophyll/metabolism
12.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732066

ABSTRACT

We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 µg GAE/µL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.


Subject(s)
Antioxidants , Cell Survival , Fruit , Plant Extracts , Humans , Caco-2 Cells , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Fragaria/chemistry , Polyphenols/pharmacology , Vitis/chemistry
13.
Food Res Int ; 186: 114340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729695

ABSTRACT

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Subject(s)
Ethylenes , Food Packaging , Fruit , Polyurethanes , Soybean Oil , Zein , Ethylenes/chemistry , Polyurethanes/chemistry , Food Packaging/methods , Porosity , Fruit/chemistry , Soybean Oil/chemistry , Zein/chemistry , Adsorption , Polymers/chemistry , Solanum lycopersicum/chemistry , Hydrophobic and Hydrophilic Interactions
14.
Food Res Int ; 186: 114403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729705

ABSTRACT

This study aimed to evaluate the functional, technological, and sensory aspects of mangaba (Hancornia speciosa Gomes) fruit pulp fermented with the probiotic Lacticaseibacillus casei 01 (LC1) during refrigerated storage (7 °C, 28 days). The effects of the fermented mangaba pulp on the modulation of the intestinal microbiota of healthy vegan adults were also assessed. Mangaba pulp allowed high viability of LC1 during storage and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermented mangaba pulp showed lower pH and total soluble solids, and higher titratable acidity, and concentrations of lactic, acetic, citric, and propionic acids during storage compared to non-fermented pulp. Also, it presented a higher concentration of bioaccessible phenolics and volatiles, and improved sensory properties (yellow color, brightness, fresh appearance, and typical aroma and flavor). Fermented mangaba pulp added to in vitro cultured colonic microbiota of vegan adults decreased the pH values and concentrations of maltose, glucose, and citric acid while increasing rhamnose and phenolic contents. Fermented mangaba pulp promoted increases in the abundance of Dorea, Romboutsia, Faecalibacterium, Lachnospira, and Lachnospiraceae ND3007 genera and positively impacted the microbial diversity. Findings indicate that mangaba pulp fermented with LC1 has improved chemical composition and functionality, inducing changes in the colonic microbiota of vegan adults associated with potential benefits for human health.


Subject(s)
Fermentation , Gastrointestinal Microbiome , Lacticaseibacillus casei , Humans , Gastrointestinal Microbiome/physiology , Lacticaseibacillus casei/metabolism , Adult , Taste , Probiotics , Male , Hydrogen-Ion Concentration , Fruit/microbiology , Fruit/chemistry , Colon/microbiology , Colon/metabolism , Young Adult , Female
15.
Food Res Int ; 186: 114331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729716

ABSTRACT

Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.


Subject(s)
Antioxidants , Cold Temperature , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Prunus persica , Reactive Oxygen Species , Signal Transduction , Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Signal Transduction/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Molecular Docking Simulation , Malondialdehyde/metabolism
16.
BMJ Open ; 14(5): e085322, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697763

ABSTRACT

INTRODUCTION: US Department of Agriculture (USDA) Gus Schumacher Nutrition Incentive Programme (GusNIP) produce prescription programme (PPR) 'prescriptions' provide eligible participants with low income, risk for diet-related chronic disease and food insecurity a healthcare issued incentive to purchase lower to no cost fruits and vegetables (FVs). However, GusNIP requirements specify that PPR prescriptions can only be redeemed for fresh (not frozen, canned or dried) FVs. This requirement may prevent participants from fully engaging in or benefiting from GusNIP PPR, given communities with lower healthy food access may have reduced fresh FV accessibility. METHODS AND ANALYSIS: We will use the nationally representative 2012-2013 National Household Food Acquisition and Purchase Survey (FoodAPS) and complementary FoodAPS Geography Component data in a secondary data analysis to examine how household GusNIP PPR eligibility relates to the quantity and variety of fresh, frozen, canned and dried FV purchases and to what extent individual, household and food environment factors shape the relationship. FoodAPS data include household food purchasing and acquisition information across a 7 day period from 14 317 individuals among 4826 households and was collected between April 2012 and January 2013. The FoodAPS Geography Component provides information about the local community/environment relative to FoodAPS households. This study will examine the correlation or association of selected variables between different quantities and varieties of fresh, frozen, canned and dried FVs, as well as correlations among multilevel predictors. ETHICS AND DISSEMINATION: We are following data integrity standards as outlined by agreements with the USDA Economic Research Service. All results of analyses will undergo a thorough disclosure review to ensure no identifiable data are shared. Results will be disseminated to research, practice and policy communities using an Open Access peer-reviewed manuscript(s), scientific and practice presentations, and a public facing report and infographic.


Subject(s)
Fruit , Vegetables , Humans , United States , Food Insecurity , Female , Male , Food Supply/statistics & numerical data , Adult , United States Department of Agriculture , Food Assistance/statistics & numerical data , Poverty , Consumer Behavior/statistics & numerical data , Family Characteristics , Research Design
17.
Front Public Health ; 12: 1371697, 2024.
Article in English | MEDLINE | ID: mdl-38741911

ABSTRACT

Introduction: Recent cash-value benefit (CVB) increases are a positive development to help increase WIC participant fruits and vegetables (FV) access. Little is known about the impacts of the CVB changes on FV redemptions or about implementation successes and challenges among WIC State and local agencies. This mixed method study aimed to evaluate (a) the CVB changes' impact on FV access among WIC child participants measured by CVB redemption rates, (b) facilitators and barriers to CVB changes' implementation, and (c) differences in FV redemption and facilitators and barriers by race/ethnicity. Methods: We requested redemption data from all 89 State agencies for April 2020 to September 2022 and utilized descriptive statistics, interrupted time series analysis (ITS), and generalized linear regression analysis. Additionally, we recruited State agencies, local agencies, and caregivers across the U.S. for interviews and used rapid qualitative analysis to find emerging themes anchored in policy evaluation and implementation science frameworks. Results: We received redemption data from 27 State agencies and interviewed 23 State agencies, 61 local agencies, and 76 caregivers of child WIC participants. CVB monthly redemptions increased at $35/child/month compared to $9/child/month; however, adjusted ITS analyses found a decrease in redemption rates at $35/child/month. The decrease was not significant when the transition/first implementation month was excluded with rates progressively increasing over time. Differences were found among racial/ethnic groups, with lower redemption rates observed for non-Hispanic Black caregivers. Overall, WIC caregivers reported high satisfaction and utilization at the $35/child/month. The frequent and quick turnaround CVB changes strained WIC agency resources with agencies serving higher caseloads of diverse racial and ethnic populations experiencing greater issues with implementing the CVB changes. Conclusion: Despite implementation challenges, the increased CVB shows promise to improve WIC participant FV access and satisfaction with WIC. WIC agencies need adequate lead time to update the CVB amounts, and resources and support to help ensure equitable distribution and utilization of the FV benefits.


Subject(s)
COVID-19 , Food Assistance , Fruit , Vegetables , Humans , Food Assistance/economics , Food Assistance/statistics & numerical data , Vegetables/economics , Fruit/economics , COVID-19/prevention & control , United States , Child , Female , Interrupted Time Series Analysis
18.
BMC Res Notes ; 17(1): 136, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745224

ABSTRACT

OBJECTIVES / PURPOSE: After school programs represents a setting for promoting healthy dietary habits. The aim of this study was to evaluate how effective the after school program staff perceived nutrition training aiming to improve quality of food purchased and meal practices. We further aimed to assess the changes in purchase of primarily fish and fish products, whole grains and fruit and vegetables, by collecting receipts from food purchase before and after the intervention. RESULTS: This is a mixed methods study. Group interviews with after school staff were carried out and the data was analyzed deductively according to the RE-AIM framework. Receipts from food purchase were collected. Findings from the qualitative interviews indicated that the intervention had been a positive experience for the staff and suggested a new way of working with promoting healthy foods in after school program units. Although there were some challenges reported, the staff made necessary adjustments to make the changes possible to sustain over time. Findings from the receipts support the changes reported by the staff. These showed increased purchase of vegetables, fish, and whole grain in all four after school program units. After school programs in similar settings may expand on these findings to improve the students' dietary habits.


Subject(s)
Program Evaluation , Schools , Humans , Program Evaluation/methods , Food Services/standards , Meals , Vegetables , Feeding Behavior , Health Promotion/methods , Fruit , Diet, Healthy , Female , Male
19.
Front Public Health ; 12: 1349558, 2024.
Article in English | MEDLINE | ID: mdl-38721547

ABSTRACT

Background: Fruits and vegetables (F&V) play a vital role in promoting health and preventing diseases. Numerous studies have demonstrated the association between F&V consumption and reduced risks of cardiovascular disease, cancer, and mortality. Despite the high priority of public health in promoting F&V intake, Chinese immigrants in Canada often fall below national guidelines in their consumption. Understanding the factors influencing F&V intake in this community is crucial for developing effective interventions. Methods: This study used an applied ethnographic research approach to gain insight into the enablers and barriers that influence F&V intake among Chinese-Canadian adults in Richmond, BC. Semi-structured interviews and 'photovoice' group sessions were conducted to gather qualitative data from community participants and health care providers (HCPs). Results: The research identified four key themes: (1) Cultural differences around how vegetables are perceived, consumed and prepared; (2) Motivators and strategies for increasing vegetable and fruit intake; (3) Lack of culturally relevant dietary education and resources; and (4) Importance of value in vegetable/fruit-related decisions. Participants showed a strong preference for the traditional Eastern diet, with cost of food and lack of knowledge about Western vegetables acting as barriers to dietary diversity. The study also highlighted the need for culturally tailored educational resources to effectively promote F&V consumption. Conclusion: By adopting a multi-modal approach, incorporating both interviews and 'photovoice' sessions, this research provided comprehensive insights into the participants' perspectives and experiences related to F&V intake. Understanding these factors can guide the development of culturally appropriate interventions to increase F&V consumption among Chinese-Canadian adults in Richmond, BC, and potentially improve their overall health and well-being. Future studies should consider the heterogeneity within the Chinese immigrant population and target a more balanced representation of age groups to further enhance our understanding of F&V intake patterns in this community.


Subject(s)
Fruit , Vegetables , Humans , Female , Male , Adult , Middle Aged , Canada , China/ethnology , Qualitative Research , Diet , Interviews as Topic , Aged , Feeding Behavior/ethnology , Feeding Behavior/psychology , Emigrants and Immigrants , Anthropology, Cultural , East Asian People
20.
BMC Plant Biol ; 24(1): 374, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714922

ABSTRACT

BACKGROUND: PC (phytocyanin) is a class of copper-containing electron transfer proteins closely related to plant photosynthesis, abiotic stress responses growth and development in plants, and regulation of the expression of some flavonoids and phenylpropanoids, etc., however, compared with other plants, the PC gene family has not been systematically characterized in apple. RESULTS: A total of 59 MdPC gene members unevenly distributed across 12 chromosomes were identified at the genome-wide level. The proteins of the MdPC family were classified into four subfamilies based on differences in copper binding sites and glycosylation sites: Apple Early nodulin-like proteins (MdENODLs), Apple Uclacyanin-like proteins (MdUCLs), Apple Stellacyanin-like proteins (MdSCLs), and Apple Plantacyanin-like proteins (MdPLCLs). Some MdPC members with similar gene structures and conserved motifs belong to the same group or subfamily. The internal collinearity analysis revealed 14 collinearity gene pairs among members of the apple MdPC gene. Interspecific collinearity analysis showed that apple had 31 and 35 homologous gene pairs with strawberry and grape, respectively. Selection pressure analysis indicated that the MdPC gene was under purifying selection. Prediction of protein interactions showed that MdPC family members interacted strongly with the Nad3 protein. GO annotation results indicated that the MdPC gene also regulated the biosynthesis of phenylpropanoids. Chip data analysis showed that (MdSCL3, MdSCL7 and MdENODL27) were highly expressed in mature fruits and peels. Many cis-regulatory elements related to light response, phytohormones, abiotic stresses and flavonoid biosynthetic genes regulation were identified 2000 bp upstream of the promoter of the MdPC gene, and qRT-PCR results showed that gene members in Group IV (MdSCL1/3, MdENODL27) were up-regulated at all five stages of apple coloring, but the highest expression was observed at the DAF13 (day after fruit bag removal) stage. The gene members in Group II (MdUCL9, MdPLCL3) showed down-regulated or lower expression in the first four stages of apple coloring but up-regulated and highest expression in the DAF 21 stage. CONCLUSION: Herein, one objective of these findings is to provide valuable information for understanding the structure, molecular evolution, and expression pattern of the MdPC gene, another major objective in this study was designed to lay the groundwork for further research on the molecular mechanism of PC gene regulation of apple fruit coloration.


Subject(s)
Evolution, Molecular , Malus , Plant Proteins , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny , Pigmentation/genetics , Fruit/genetics , Fruit/metabolism , Genes, Plant , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...